Derive from (2) v2= v1 + at
Substitute V2 to V1 to (1) d = 1/2 (v1+v2) t
(4) d = v2Δt - ½aΔt²
Deive from (2) v1= v2 - at
Substitue V1 to V2 to (1)
(5)v2² = v1² + 2ad
Multiply (1) and (2)
(3) d = v1Δt + ½aΔt²
d= area of the rectangle + area of the triangle
= v1Δt + ½(at)Δt
= v1Δt + ½aΔt²
(4) d = v2Δt - ½aΔt²
d = area of the large rectangle - area of the triangle
= v2Δt - ½(at)Δt
= v2Δt - ½aΔt²
awesome!
ReplyDelete